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Electrostatic NEMS Switches (back to basics)
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Scaling of NEMS Switches (in real life)
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law
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R. Nathanael et al., “4-Terminal Relay Technology for Complementary Logic’,
IEDM, 20009.
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S. Chong et al., “Nanoelectromechanical (NEM) Relays Integrated with CMOS SRAM for Improved
Stability and Low Leakage”, ICCAD 20089.

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



Some possible solutions

 Apply pre-bias (explored in literature):. problem with

adhesion forces!!

* Dual gate structures

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



Some possible solutions

 Apply pre-bias (explored in literature):. problem with

adhesion forces!!
* Dual gate structures

* Immerse in liquid dielectric

Slide courtesy of S. Houri - HOURI S., et al. Limits of CMOS Technology and Interest of NEMS Relays for Adiabatic Logic Applications. 2015.



Some possible solutions
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for Low Voltage Operation and Reliability Improvement”, IEDM 2009
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J. O. Lee et al., “A sub-1-volt nanoelectromechanical switching device”, nature
nanotechnology, 2012.
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Some possible solutions

 Apply pre-bias (explored in literature). problem with

adhesion forces!!

* Dual gate structures

* Immerse In liquid dielectric
* Innovative fabrication process

» Explore new materials and modes of operation
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NEMS-Based Adiabatic Logic Circuits
A Match Made in Heaven ?
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NEMS-Based Adiabatic Logic

Circuit Level Approach Device Level Approach
* SOI/ FDSOI

» Sub-threshold * FinFET

* Parallelism * TFET

« Power Gating * -V FET

* Asynchronous * NWFET

» Adiabati * CNTFET
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Classical Logic (quick reminder)
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Adiabatic Charging of Capacitors

S. Paul, A. M. Schliaffer, J. A. Nossek, “Optimal charging of capacitors,” IEEE Transactions on
Circuts and Systems —I, vol. 47, pp. 1009-1016, July 2000.
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Adiabatic Charging of Capacitors
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Adiabatic Charging of Capacitors

Classical Dissipation Limit
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Adiabatic Logic
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CMOS Adiabatic Logic

P Teichmann, 2012
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CMOS Adiabatic Logic

P. Teichmann, 2012
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CMOS Adiabatic Logic

P. Teichmann, 2012
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CMOS Adiabatic Logic
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NEMS Adiabatic Logic
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Unconventional computing



Robust Soldier Crab Ball Gate

Yukio-Pegio Guniji

Yuta Nishiyama

Department of Earth and Planetary Sciences
Kobe University

Kobe 657-8501, Japan

Andrew Adamatzky

Unconventional Computing Centre
University of the West of England
Bristol, United Kingdom

Soldier crabs Mictyris guinotae exhibit pronounced swarming behavior.
Swarms of the crabs are tolerant of perturbations. In computer models
and laboratory experiments we demonstrate that swarms of soldier
crabs can implement logical gates when placed in a geometrically con-
strained environment.

QObust SOld ier Crab Ba” Ga'te Yukio-Pegio Gunji, Yuta Nishiyama, Andrew Adamatzky
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Robust Soldier Crab Ball Gate - Yukio-Pegio Gunji, Yuta Nishiyama, Andrew Adamatzky
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Robust Soldier Crab Ball Gate

- How much energy?

- Crabs usually eat algae. Cralbs are
omnivorous, meaning that they will eat
both plants and other animals for
sustenance.

- Energy Content of Algae: 5kcal for 3g

- Average weight of the crabs was 42¢g

-+ Suppose daily need is 50% of its weight:
219 of algae and thus 35kcal

- 146440J of energy for daily operating a
crab logic gate or 1.7W of power




What about the memory?



NEMS system
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Heat production evaluation

H(Pa R7 t) — szn(P) + Hznt(R) + He:ct(Ra t)
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Heat production evaluation

H(Pa R7 t) — szn(P) + Hznt(R) + He:z:t(Ra t)

Hooo(R, 1) = 2_:9 (z; — 1) ( fur(t)  fpr(?) ) N
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DOF potential landscape
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Reset protocol

+ Objective: move the system from an unknown state to knowi

state
- AS = kg log(2)
* Qmin = ks T l0g(2)

VW




Reset protocol

Quick and dirty: apply a positive force along Z on all atoms
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Reset protocol

Quick and dirty: apply a positive force along Z on all atoms
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WRONG: it is not possible to control the velocity!



Reset protocol

Quick and dirty: apply a positive force along Z on all atoms
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Reset protocol

Controlled way: apply a set of forces in to gently put the system
INn the desired configuration
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Reset protocol

Controlled way: apply a set of forces in to gently put the system
IN the desired configuration
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Reset protocol

Controlled way: apply a set of forces in to gently put the system
INn the desired configuration
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Reset protocol

Controlled way: apply a set of forces in to gently put the system
INn the desired configuration
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Switch protocol

+ Objective: move the system from a known state to another
Known state
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Switch protocol

Controlled way: apply a set of forces in to gently put the system
INn the desired configuration
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Switch protocol

Controlled way: apply a set of forces in to gently put the system
IN the desired configuration
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Switch protocol

Controlled way: apply a set of forces in to gently put the system
INn the desired configuration
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Switch protocol

Controlled way: apply a set of forces in to gently put the system
INn the desired configuration
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Switch protocol

Wrong way: apply the switch protocol from the wrong initial state
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Wrong way: apply the switch protocol from the wrong initial state




Switch protocol

Wrong way: apply the switch protocol from the wrong initial state
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Thank you for your attention!

igor.neri@nipslab.org
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